Cap is not showing actual amount after deploying contract on Main Ethereum network

Amelia: 2 weeks ago

I have deployed a crowdsale contract with bonus stages on Main Ethereum Network using I have set a Cap amount of ether in wei as my goal. After deploying contract, I looked into the contract details for checking the information like token address generated, start and end date time parameters, amount of ethers raised and the most important CAP amount that I set into my code(The goal for my crowdsale). Now everything is fine. The contract is showing all the correct information but the CAP amount is not correct. Given below is my crowdsale contract code.

pragma solidity ^0.4.18;

contract ERC20Basic {
  uint256 public totalSupply;
  function balanceOf(address who) public view returns (uint256);
  function transfer(address to, uint256 value) public returns (bool);
  event Transfer(address indexed from, address indexed to, uint256 value);

library SafeMath {
  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
    if (a == 0) {
      return 0;
    uint256 c = a * b;
    assert(c / a == b);
    return c;

  function div(uint256 a, uint256 b) internal pure returns (uint256) {
    // assert(b > 0); // Solidity automatically throws when dividing by 0
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold
    return c;

  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    assert(b <= a);
    return a - b;

  function add(uint256 a, uint256 b) internal pure returns (uint256) {
    uint256 c = a + b;
    assert(c >= a);
    return c;

contract Ownable {
  address public owner;

  event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

   * @dev The Ownable constructor sets the original `owner` of the contract to the sender
   * account.
  function Ownable() public {
    owner = msg.sender;

   * @dev Throws if called by any account other than the owner.
  modifier onlyOwner() {
    require(msg.sender == owner);

   * @dev Allows the current owner to transfer control of the contract to a newOwner.
   * @param newOwner The address to transfer ownership to.
  function transferOwnership(address newOwner) public onlyOwner {
    require(newOwner != address(0));
    OwnershipTransferred(owner, newOwner);
    owner = newOwner;


contract BasicToken is ERC20Basic {
  using SafeMath for uint256;

  mapping(address => uint256) balances;

  * @dev transfer token for a specified address
  * @param _to The address to transfer to.
  * @param _value The amount to be transferred.
  function transfer(address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));
    require(_value <= balances[msg.sender]);

    // SafeMath.sub will throw if there is not enough balance.
    balances[msg.sender] = balances[msg.sender].sub(_value);
    balances[_to] = balances[_to].add(_value);
    Transfer(msg.sender, _to, _value);
    return true;

  * @dev Gets the balance of the specified address.
  * @param _owner The address to query the the balance of.
  * @return An uint256 representing the amount owned by the passed address.
  function balanceOf(address _owner) public view returns (uint256 balance) {
    return balances[_owner];


contract ERC20 is ERC20Basic {
  function allowance(address owner, address spender) public view returns (uint256);
  function transferFrom(address from, address to, uint256 value) public returns (bool);
  function approve(address spender, uint256 value) public returns (bool);
  event Approval(address indexed owner, address indexed spender, uint256 value);

contract StandardToken is ERC20, BasicToken {

  mapping (address => mapping (address => uint256)) internal allowed;

   * @dev Transfer tokens from one address to another
   * @param _from address The address which you want to send tokens from
   * @param _to address The address which you want to transfer to
   * @param _value uint256 the amount of tokens to be transferred
  function transferFrom(address _from, address _to, uint256 _value) public returns (bool) {
    require(_to != address(0));
    require(_value <= balances[_from]);
    require(_value <= allowed[_from][msg.sender]);

    balances[_from] = balances[_from].sub(_value);
    balances[_to] = balances[_to].add(_value);
    allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
    Transfer(_from, _to, _value);
    return true;

   * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
   * Beware that changing an allowance with this method brings the risk that someone may use both the old
   * and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
   * race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
   * @param _spender The address which will spend the funds.
   * @param _value The amount of tokens to be spent.
  function approve(address _spender, uint256 _value) public returns (bool) {
    allowed[msg.sender][_spender] = _value;
    Approval(msg.sender, _spender, _value);
    return true;

   * @dev Function to check the amount of tokens that an owner allowed to a spender.
   * @param _owner address The address which owns the funds.
   * @param _spender address The address which will spend the funds.
   * @return A uint256 specifying the amount of tokens still available for the spender.
  function allowance(address _owner, address _spender) public view returns (uint256) {
    return allowed[_owner][_spender];

   * approve should be called when allowed[_spender] == 0. To increment
   * allowed value is better to use this function to avoid 2 calls (and wait until
   * the first transaction is mined)
   * From MonolithDAO Token.sol
  function increaseApproval(address _spender, uint _addedValue) public returns (bool) {
    allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue);
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;

  function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) {
    uint oldValue = allowed[msg.sender][_spender];
    if (_subtractedValue > oldValue) {
      allowed[msg.sender][_spender] = 0;
    } else {
      allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
    Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
    return true;


contract TOKKA is StandardToken {
    string public name = "Test Token";
    string public symbol = "TT";
    uint256 public decimals = 18;

    uint256 constant INITIAL_SUPPLY = 50000000 * 10**18;
    function TOKKA () public {
       balances[msg.sender] = INITIAL_SUPPLY;

contract Crowdsale is Ownable {
  using SafeMath for uint256;

   // The token being sold
  TOKKA public token;

  // start and end timestamps where investments are allowed (both inclusive)
  uint256 public startTime;
  uint256 public endTime;

  // address where funds are collected
  address public wallet;

  // how many token units a buyer gets per wei (500)
  uint256 public rate ;

  // amount of raised money in wei
  uint256 public weiRaised;

  // Our Goal is 68254.06111663644 Ethers Hardcap
  uint256 public CAP = 68254061116636440000000;

  bool crowdsaleClosed = false;

  //Bonus Parameters

  uint256 public PreIcobonusEnds = 1535731200;

  uint256 public StgOnebonusEnds = 1538323200;
  uint256 public StgTwobonusEnds = 1541001600;
  uint256 public StgThreebonusEnds = 1543593600;
  uint256 public StgFourbonusEnds = 1546272000;

  event TokenPurchase(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);

  function Crowdsale(uint256 _startTime, uint256 _endTime, uint256 _rate, address _wallet) public {
    require(_startTime >= now);
    require(_endTime >= _startTime);
    require(_rate > 0);
    require(_wallet != address(0));

    startTime = _startTime;
    endTime = _endTime;
    rate = _rate;
    wallet = _wallet;

    //Bonus Parametersss

    //StgOnebonusEnds = _bonusEnds;

    token = createTokenContract();

// creates the token to be sold.
// override this method to have crowdsale of a specific mintable token.
function createTokenContract() internal returns (TOKKA) {
    return new TOKKA();

  // fallback function can be used to buy tokens
  function () external payable {

  // low level token purchase function
function buyTokens(address beneficiary) public payable {
    require(beneficiary != address(0));

    //Bounus Conditions

    if (now <= PreIcobonusEnds) {
            rate = 667;

     else if (now <= StgOnebonusEnds && now > PreIcobonusEnds) {
            rate = 641;

        else if (now <= StgTwobonusEnds && now > StgOnebonusEnds ) {
            rate = 616;

         else if (now <= StgThreebonusEnds && now > StgTwobonusEnds ) {
            rate = 590;
         else if (now <= StgFourbonusEnds && now > StgThreebonusEnds ) {
            rate = 564;
            rate = 513;

    uint256 weiAmount = msg.value;

    // calculate token amount to be created
    uint256 tokens = weiAmount.mul(rate);

    // update state
    weiRaised = weiRaised.add(weiAmount);

    // transfer tokens purchased 
    //ERC20(token).transfer(this, tokens);
    //StandardToken(token).transfer(this, tokens);
    StandardToken(token).transfer(beneficiary, tokens);

    TokenPurchase(msg.sender, beneficiary, weiAmount, tokens);


  function forwardFunds() internal {

  function validPurchase() internal view returns (bool) {
    bool withinPeriod = now >= startTime && now <= endTime;
    bool nonZeroPurchase = msg.value != 0;
    return withinPeriod && nonZeroPurchase;

  function hasEnded() public view returns (bool) {
    return now > endTime;

  function GoalReached() public view returns (bool) {

    return (weiRaised >= CAP);

  function Pause() public onlyOwner
       //if (weiRaised >= CAP){

        require(weiRaised >= CAP);

        crowdsaleClosed = true;

  function Play() public onlyOwner
       //if (weiRaised >= CAP){

        require(crowdsaleClosed == true);

        crowdsaleClosed = false;


Note : This crowdsale contract is working fine on Ropsten Test Network and showing the exact amount of CAP but it is having issues on the Main Ethereum network. Any help will be appreciable. Thanks

Charlotte: 2 weeks ago

The source code you reported does not match the contract deployed by transaction 0x640b57c210e6cfeeba988529c19a6cb1f869a348494193028269158a17c4d159 ( You can check easily that the linked token created by the constructor is at 0x206df34F59a019A09C02160Adc1Ffe17cbc2f518 ( and it's called Streampay Token and not Test Token.

Side note: the source code you reported has many different flaws, even at a first sight. Please don't use it in the main net.